Research on the flexural behavior of polypropylene fiber reinforced concrete beams with hybrid reinforcement of GFRP and steel bars

Author:

Wei Bingyan,He XiongjunORCID,Wu WeiweiORCID,Wu ChaoORCID,He JiaORCID

Abstract

AbstractTo study the flexural behavior of glass fiber (GFRP) bars and steel bars hybrid reinforced polypropylene fiber concrete (Hybrid-PFRC) beams, one GFRP-PFRC beam, one Steel-PFRC beam, and five Hybrid-PFRC beams were designed and fabricated. The effects of the different area ratio ($${{A_{f} } \mathord{\left/ {\vphantom {{A_{f} } {A_{s} }}} \right. \kern-0pt} {A_{s} }}$$ A f / A s ) of GFRP to steel bars and polypropylene fiber (PP) volume fraction on the flexural behavior of Hybrid-PFRC beams were investigated through experiments. The research results indicated that the Hybrid-PFRC beams’ load–deflection curves exhibited trilinear characteristics with specimen cracking and steel bars yielding as turning points. As $${{A_{f} } \mathord{\left/ {\vphantom {{A_{f} } {A_{s} }}} \right. \kern-0pt} {A_{s} }}$$ A f / A s increased, the flexural bearing capacity of Hybrid-PFRC beams increased, the deflection decreased, the crack spacing and width decreased, and the ductility decreased. The addition of PP did not significantly improve the flexural bearing capacity and cracking moment of Hybrid-PFRC beams, but it greatly enhanced the ductility of the beam. Moreover, PP had good advantages in controlling crack propagation in the beam. The article also used the theoretical model to predict and analyze the flexural behavior of Hybrid-PFRC beams. When predicting the maximum crack width of Hybrid-PFRC beams, when PP is not added to the beam, the bonding coefficient kb should be greater than 1.4; When PP is added to the beam, it is recommended that the bonding coefficient kb should not exceed 1.4.

Funder

National Natural Science Foundation of China

China Scholarship Council

Major Project of Technological Innovation of Hubei Province

Science and Technology Project of the Department of Transportation of Hubei Province

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3