Abstract
AbstractThe mechanical properties of natural fibers, as used to produce sustainable biocomposites, vary significantly—both among different plant species and also within a single species. All plants, however, share a common microstructural fingerprint. They are built up by only a handful of constituents, most importantly cellulose. Through continuum micromechanics multiscale modeling, the mechanical behavior of cellulose nanofibrils is herein upscaled to the technical fiber level, considering 26 different commonly used plants. Model-predicted stiffness and elastic limit bounds, respectively, frame published experimental ones. This validates the model and corroborates that plant-specific physicochemical properties, such as microfibril angle and cellulose content, govern the mechanical fiber performance.
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献