A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings

Author:

Mazars Jacky,Hamon François,Grange Stéphane

Abstract

Abstract Among the “theories” applied to model concrete behavior, damage mechanics has proven to be efficient. One of the first models for concrete introduced into such a framework is Mazars’ damage model. A new formulation of this model, called the “μ model” and based on a coupling of elasticity and damage within an isotropic formulation, is proposed herein for the purpose of 3D cyclic and dynamic loadings. Unilateral behavior (i.e., crack opening and closure) is introduced by use of two internal variables. A threshold surface is then associated with each of these variables. The shape of such surfaces has been chosen to model as accurately as possible concrete behavior under various loadings, i.e., tension, compression, shear, biaxial and triaxial, in the aim of simulating a large number of loading types (monotonic, cyclic, seismic, blast, impact, etc.). Applications of this model are presented on plain or reinforced concrete elements subjected to a range of loadings (e.g., multiaxial, cyclic, dynamic). A comparison with experimental results serves to demonstrate the effectiveness of these various selected options.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3