Influence of edge proximity on concrete breakout failure in post-installed RC columns foundation joints

Author:

Cattaneo Sara,Mahadik VinayORCID,Genesio Giovacchino,Hofmann Jan

Abstract

AbstractThis paper discusses findings from an experimental program aimed at investigation of concrete breakout failure within the rebar end anchorage zone of reinforced concrete column-to-foundation joints, with columns located in proximity of foundation edge/s. A total of four tests on full scale column foundation joints are presented. In all specimens the column main reinforcement is anchored in the foundation using post-installed rebar technology. All connections are designed with the objective to trigger concrete breakout failure mode within the rebar end anchorage zone. Finite element analyses were used as a tool to design the specimens. The paper presents discussion of the test results within the framework of expectations outlaid during design of the test specimens. The effects of bending compression from column on the concrete breakout capacity under influence of foundation edges is the specific focus of the present investigation. It is shown that the direction of application of load on the column largely determines the effect of bending compression from column on concrete breakout capacity. The test data presented in this paper offers the necessary benchmark data on concrete breakout behavior in the case of reinforced concrete column foundation joints under influence of foundation edges. This test data along with insights from finite element analyses is employed to explore and possibly identify necessary modifications to the current state-of-the-art consideration of concrete breakout capacity for reinforced concrete connections.

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3