Long-term performance of MgO–SiO2 binder

Author:

Shah VineetORCID,Dhakal Milap,Scott Allan

Abstract

AbstractMagnesium silicate hydrate (M–S–H) formed on reaction of MgO and reactive SiO2 imparts binding characteristics similar to Portland cement (PC). Limited knowledge is available on the long-term mechanical and durability performance of M–S–H binder systems. In this study, the performance of MgO–SiO2 binder was assessed up to 365 days. In addition to silica fume (SF), the most widely used silica source with MgO, calcined clay (CC) with kaolinite content of ~ 40–50% and industrial grade metakaolin (MK) were also investigated. Mortar specimens were prepared with all the three silica sources at three different proportion levels of MgO and silica source. Thermodynamic modelling was carried out to further understand the changes occurring in the phase assemblage during hydration for the adopted proportions. Concrete mixes comprising of MgO and MK or SF in a ratio of 1:1 and PC as a control mix were cast a water to binder ratio of 0.4. The compressive strength and porosity were measured at 7, 28, 90 and 365 days on mortar and concrete specimens. In addition, elastic modulus and electrical resistivity was also measured on the concrete samples at all the above-mentioned ages. MgO mixes with CC and MK showed a continual increase in compressive strength until 365 days whereas strength retrogression was observed in MgO–SF mixes after 90 days. The durability indicators for MgO–MK concrete showed better or similar performance as compared to PC. The aluminum present in the CC and MK helps to improve the overall characteristics of the MgO–SiO2 binder.

Funder

ministry of business, innovation and employment

University of Canterbury

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3