Microstructure analysis of cement-biochar composites

Author:

Lorenzoni RenataORCID,Cunningham Patrick,Fritsch Tobias,Schmidt Wolfram,Kruschwitz Sabine,Bruno Giovanni

Abstract

AbstractThe use of biochar as a concrete constituent has been proposed to reduce the massive carbon footprint of concrete. Due to the low density and complex porosity of biochar, microstructural analysis of Portland cement-biochar composites is challenging. This causes challenges to the improvement of the micro-scale understanding of biochar composite behavior. This work advances the microstructural understanding of Portland cement composites with 0, 5, and 25 volume percent (vol%) of cement replaced with wood biochar by applying common characterization techniques of mercury intrusion porosimetry (MIP), gas sorption, scanning electron microscopy, and isothermal heat flow calorimetry (HFC) in conjunction with 1H nuclear magnetic resonance (NMR) and micro-X-ray computed tomography (XCT) analysis techniques. The combination of these techniques allows a multi-scale investigation of the effect of biochar on the microstructure of cement paste. NMR and XCT techniques allow the observation and quantification of the pore space. HFC and MIP confirmed that biochar absorbs moisture and reduces the effective water-cement ratio. Gas sorption, MIP, and NMR shows that 5 vol% replacement does not significantly affect the gel and capillary pore structures. Results from XCT (supported by MIP and NMR) show that biochar can reduce the formation of larger pores. Importantly, XCT results suggest that biochar can act as a flaw in the microstructure which could explain reductions in the mechanical properties. Overall, the mechanical properties already analyzed in the literature are consistent with the microstructural changes observed, and these results highlight the need to carefully tailor the volume fraction of biochar to control its effect on the paste microstructure.

Funder

Adolf-Martens-Fonds

Bundesanstalt für Materialforschung und -prüfung (BAM)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3