Early-age creep behaviour of 3D printable mortars: Experimental characterisation and analytical modelling

Author:

Esposito LauraORCID,Casagrande Lorenzo,Menna Costantino,Asprone Domenico,Auricchio Ferdinando

Abstract

AbstractThe construction sector is experiencing significant technological innovations with digitalisation tools and automated construction techniques, such as additive manufacturing. Additive manufacturing utilising cement-based materials can potentially remove the technological/economic barriers associated with innovative architectural/structural shapes which are not suitable for conventional formworks adopted for concrete material. However, in the “free-form” digital fabrication with concrete, the mechanical properties prediction of the material in the fresh state is essential for controlling both the element deformations and overall stability during printing. In this paper, the authors explore the critical aspects related to the determination of the early-age creep properties of a 3D printable cement-based material, particularly investigating such a behaviour at different resting times. The experimental results are used to calibrate the Burgers’ analytical model to consider both the elastic and the viscous response of the 3D printable mortar investigated in the fresh state. The visco-elastic model is validated by comparing the analytical total strain vs time curve with the corresponding experimental counterpart replicating the layer-by-layer stacking process in the 3D concrete printing process. It was found that the Burgers’ model represents a valuable numerical approach to evaluate the overall accumulation of layer deformation of a 3D printed element, since it is capable of taking into account the time dependency due to the time gap and the variable material stiffness over the process time.

Funder

Regione Lombardia

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3