Bond durability between anchored GFRP bar and seawater concrete under offshore environmental conditions

Author:

Kazemi Hamidreza,Yekrangnia MohammadORCID,Shakiba Milad,Bazli Milad,Vatani Oskouei Asghar

Abstract

AbstractThe lower bond strength of FRP bars to concrete compared to steel bars has remained an unsolved barrier to the widespread use of FRP-reinforced concrete under extreme loading. Additionally, the degradation of the bond between FRP reinforcement and concretes in aggressive environments adds to the existing concern. In this study, an innovative anchorage system comprised of polypropylene pipe was used to strengthen the bond between seawater concrete and GFRP bars after 250 days of exposure to offshore environmental conditions. As material factors, two types of GFRP bars (sand-coated and ribbed) and two types of concrete (normal and seawater concrete) were evaluated. Four distinct environmental conditions were used to assess the samples: (i) ambient environment (control), (ii) tap water, (iii) seawater, and (iv) wet-dry cycles in seawater. According to the findings of the direct pull-out tests, the suggested anchor system strengthens the bond and shifts the failure mode from bond failure to bar rupture. Additionally, after exposure to 250 days of seawater wet-dry cycles, GFRP-reinforced seawater concrete lost 5% of its maximum bond strength (developed bar tensile stress). All other samples exposed to different environmental conditions either increased or decreased in bond strength by less than 5% after 250 days, compared to the control samples.

Funder

Charles Darwin University

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3