Effects of exposure sequence and GGBS cement replacement on performance of concrete subjected to carbonation and chloride ingress

Author:

Blackshaw Grace A.,Forsdyke Jessica C.ORCID,Lees Janet M.ORCID

Abstract

AbstractIn a variety of applications, such as in tidal zones, abutments of bridges and concrete tunnel linings, reinforced concrete is exposed to both carbonation and chloride ingress. The exposure can be either simultaneous or sequential. However, durability design rarely considers synergistic effects due to carbonation and chloride ingress, even though this may have detrimental consequences for performance. Comparative implications of exposure sequence across different concrete compositions are also unknown. In this study, an experimental investigation on the effects of the sequence of carbonation and chloride ingress was conducted, using two concretes which differ by 50% cement replacement with ground granulated blast furnace slag (GGBS). Specimens were exposed to a combination of 10% CO2 accelerated carbonation and immersion in 3% sodium chloride solution, in either sequence, and compared with companion samples subjected to only one of these aggressive environments. The extent of carbonation was measured using phenolphthalein indicator solution, while silver nitrate and Rapid Chloride Testing provided indicators of the chloride ingress. For both concrete mixes, specimens with prior chloride ingress exhibited a decreased rate of carbonation when compared to specimens with no prior exposure. Conversely, specimens with prior carbonation displayed an increased rate of chloride ingress compared to non-carbonated counterparts and a step in the acid soluble chloride content in the region of the carbonation front. The concrete composition appeared to play a role since a greater increase in chloride diffusion coefficient due to prior carbonation was observed in the mix with 50% GGBS replacement than the mix without. These findings suggest that in concrete structures exposed to air and saline environments, the effects of sequential exposure should be characterised.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3