A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation

Author:

Lubelli B.ORCID,Aguilar A. M.,Beck K.,De Kock T.,Desarnaud J.,Franzoni E.,Gulotta D.,Ioannou I.,Kamat A.,Menendez B.,Rörig-Dalgaard I.,Sassoni E.

Abstract

AbstractSalt crystallization is a major cause of damage in porous building materials. Accelerated salt weathering tests carried out in the laboratory are among the most common methods to assess the durability of material to salt decay. However, existing standards and recommendations for salt weathering tests have limitations in terms of effectiveness and/or reliability. In the framework of the RILEM Technical Committee 271-ASC, a procedure has been developed which proposes a new approach to salt crystallization tests. It starts from the consideration that salt damage can be seen as a process developing in two phases: accumulation of the salt in the material and propagation of the decay. In the first phase, salts are introduced in the material and accumulate close to the evaporation surface, while in the second phase damage propagates because of repeated dissolution and crystallization cycles, induced by re-wetting with liquid water and by relative humidity changes. In this paper, the procedure is described and the results of a first round robin validation of the test, carried out on 7 materials and involving 10 laboratories, are presented. The results show that the procedure is effective to cause decay within the time period of the test (about 3 months) and that the decay increases with subsequent cycles. The decay observed differs in type and severity depending on the salt type and concentration and on the type of substrate. The decay types detected in the laboratories are generally representative of those observed in the field for the selected substrates. The differences in durability between the various substrates, as assessed at the end of the test, are in line with the durability expected based on field observation. The reproducibility of the results in terms of decay type is good; some differences have been observed in terms of material loss. These are more significant in the case of NaCl contaminated specimens. Based on the results, proposals for fine-tuning of the procedure are given.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference44 articles.

1. Goudie A, Viles H (1997) Salt weathering hazards. Wiley

2. Charola AE (2000) Salts in the deterioration of porous materials: an overview. J Am Inst Conserv 39:327–343. https://doi.org/10.1179/019713600806113176

3. Doehne E (2001) Salt weathering: a selective review. Nat Stone Weather Phenom Conserv Strateg Case Stud 205:51–64. https://doi.org/10.1144/GSL.SP.2002.205.01.05

4. CEN (1999) EN 12370—Natural stone test methods—Determination of resistance to salt crystallization

5. RILEM TC 25-PEM (1980) Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3