Effect of pore modulating additives-sepiolite and colloidal nano silica-on physical, mechanical and durability properties of lime-based renders

Author:

Stazi FrancescaORCID,Corinaldesi Valeria,Capotondo Ylenia,Porcarelli Ilaria,Di Perna Costanzo,D’Orazio Marco

Abstract

AbstractIn hot-humid climates, porous external surfaces of the buildings with high water sorption capabilities could contribute to the surface temperatures reduction through the release of latent heat by evaporative cooling. On the other hand, compact and low permeable finishing materials could have mechanical and durability benefits respect to the underlying supports, for example reducing the permeability to degrading agents. In this paper, the properties of lime base coat renders with pore modulating additives (sepiolite and colloidal nano silica) have been surveyed to evaluate their effectiveness in water absorption, thermal performance, and the fulfilment of mechanical requirements for the application on the external side of the walls. A traditional lime–sand formulation was taken as reference. After preliminary tests on workability and shrinkage, the optimal mix designs were selected and the samples were subjected to several mechanical and thermo-hygrometric tests, before and after accelerated aging. The results allowed demonstrating that the use of sepiolite in substitution of sand, enhances the render ductility, thermal resistance and water uptake but worsens its mechanical stability, increasing the shrinkage effects and slightly reducing the ultimate strength values. The addition of colloidal nano silica, either to lime–sepiolite or to lime–sand renders, fails to produce any improvement in their either physical or mechanical behavior. Mixed formulations (lime–sand with sepiolite and nano silica) behave as simple lime–sand solutions, showing optimal compressive and flexural strength but reduced water uptake capabilities. This demonstrates that the presence of sand prevails in the performance of the render, and that the adoption of other additives doesn’t worth the cost for the benefit presented.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3