Development of high strength recycled aggregate concrete-composite effects of fly ash, silica fume and rice husk ash as pozzolans

Author:

Fernando Ashani,Selvaranjan Kajanan,Srikanth Gowsijan,Gamage J. C. P. H.

Abstract

AbstractThe world today has started facing bigger problems related to the concrete industry, especially with concrete becoming the most extensively used construction material in the world. At a time like this, where more eco-friendly substitutions are stringent, it calls for a more comprehensive approach in producing recycled concrete from recycled concrete aggregates (RCA). This study is an extension to previous studies involving composite utilization of pozzolans in treating RCA. It investigates on the possibility of using rice husk ash (RHA) along with other pozzolans as a cement replacement, in both stages of aggregate treatment and concrete production. It was observed that through this treatment, aggregate specific gravity was increased to a value of 2.37 which was earlier 2.18 for untreated RCA, 26% and 59% reductions were obtained for water absorption and porosity of aggregates, respectively. Further the concrete which contained RHA in both stages, attained a high strength of 55.4 MPa, even surpassing the control mix containing natural aggregates. The same mix resulted a 12% increase in its surface resistivity. Rapid Chloride Permeability Test (RCPT) and water permeability results also showed substantial improvements when compared to the reference RCA mix. Similar to previous studies involving composite use of pozzolans, improvements in the microstructure of both the aggregates and concrete through the use of RHA resulted in the amelioration of both mechanical and durability properties of concrete. This evidently indicates the possibility of achieving high strengths, even with the use of RCA derived from parent concretes of lower grades.

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3