The efficiency of recycled glass powder in mitigating the alkali-silica reaction induced by recycled glass aggregate in cementitious mortars

Author:

Mahmood Aziz Hasan,Afroz Sumaiya,Kashani AlirezaORCID,Kim Taehwan,Foster Stephen J.

Abstract

AbstractWith the potential for a decline in fly ash (FA) production over time, due to the phasing down of coal fired power plants, alternative supplementary cementitious materials need to be identified. The efficiency of pulverised glass powder (PGP) was studied for its reactivity and its capacity for inhibiting alkali-silica reaction (ASR) that results from utilisation of recycled glass as a fine aggregate (sand) replacement. Characterisations of pastes containing PGP reveal that PGP may possess latent hydraulic properties, resulting in a more than 75% strength activity index, together with better strength gain than FA-blended pastes. PGP also offered increased heat of hydration compared to FA, from a combination of the dilution effect, filler effect and early-age reactions of PGP. A comparable efficiency of PGP and FA in ASR expansion mitigation was confirmed with mortar bar expansions of less than 0.10% at cement replacement levels of at least 10%. Both PGP and FA provided alkali dilution and reduced the mass transport in hydrated cement paste from the refinement of larger pores to below 60 nm. The FA mix consumed calcium hydroxide and, thus, performed marginally better than the PGP mix in mitigating ASR. This pozzolanic reactivity is not evident for PGP, whereas in the literature glass powders are often regarded as pozzolanic. Microscopic images confirm that PGP and FA significantly limit the occurrence of ASR gels without altering its composition. It was concluded that PGP is a comparable ASR inhibitor to FA, despite the underlying differences in their mechanisms. The result of this research support the utilisation of recycled glass both as an aggregate, and as an ASR-inhibiting SCM in cementitious systems.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-volume glass powder blended cements;High-Volume Mineral Admixtures in Cementitious Binders;2025

2. Piezoresistive performance of self-sensing bitumen emulsion-cement mortar with multi-walled carbon nanotubes;Cement and Concrete Composites;2024-10

3. Mechanisms for Recycling E-Glass Waste to Enhance The Fracture Energy of 3d Printed Structural Dune Sand Mortar;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-09-11

4. Prediction of alkali–silica reaction expansions of mortars containing glass waste;Proceedings of the Institution of Civil Engineers - Waste and Resource Management;2024-07-10

5. Optimization and Characterization of Cementitious Composites Combining Maximum Amounts of Waste Glass Powder and Treated Glass Aggregates;International Journal of Concrete Structures and Materials;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3