Abstract
AbstractIn this paper, magnesium oxychloride cement (MOC), which has a needle-like structure, is upgraded with super-hydrophobic surface using a facile method involving immersion in a FAS-ethanol solution. The influence of the molar ratios of the raw materials on the super-hydrophobic property was investigated. The phase compositions, microstructure, compressive strength, water resistance and wetting behaviour are studied in detail by X-Ray diffraction, scanning electron microscopy, a water contact angle measurement instrument, and mechanical testing. The water contact angle of as-prepared MOC reaches 152 ± 1° for the optimal mix design. The variation of the water contact angle of different mixes can be explained by the Cassie–Baxter model. The experiments using rolling off dust on the super hydrophobic surface present excellent self-cleaning ability. Moreover, proposed super hydrophobic surface exhibited excellent UV-durability, indicating a promising potential for the outdoor application.
Funder
EPSRC-NSFC
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献