Performance of cementitious systems containing calcined clay in a chloride-rich environment: a review by TC-282 CCL

Author:

Dhandapani YuvarajORCID,Machner AlisaORCID,Wilson WilliamORCID,Kunther WolfgangORCID,Afroz Sumaiya,Kim TaehwanORCID,Zunino FrancoORCID,Joseph ShijuORCID,Kanavaris FragkoulisORCID,Castel ArnaudORCID,Thienel Karl-ChristianORCID,Irassar Edgardo F.ORCID,Bishnoi ShashankORCID,Martirena FernandoORCID,Santhanam ManuORCID

Abstract

AbstractIn this review by TC- 282 CCL, a comprehensive examination of various facets of chloride ingress in calcined clay-based concrete in aggressive chloride-rich environments is presented due to its significance in making reinforced concrete structures susceptible to chloride-induced corrosion damages. The review presents a summary of available literature focusing on materials characteristics influencing the chloride resistance of calcined clay-based concrete, such as different clay purity, kaolinite content and other clay minerals, underscoring the significance of pore refinement, pore solution composition, and chloride binding mechanisms. Further, the studies dealing with the performance at the concrete scale, with a particular emphasis on transport properties, curing methods, and mix design, are highlighted. Benchmarking calcined clay mixes with fly ash or slag-based concrete mixes that are widely used in aggressive chloride conditions instead of OPC is recommended. Such comparison could extend the usage of calcined clay as a performance-enhancing mineral admixture in the form of calcined clay or LC2 (limestone-calcined clay). The chloride diffusion coefficient in calcined clay concrete is reported to be significantly lower (about 5–10 times in most literature available so far) compared to OPC, and even lower compared to fly ash and slag-based concrete at early curing ages reported across recent literature made with different types of cements and concrete mixes. Limited studies dealing with reinforcement corrosion point out that calcined clay delays corrosion initiation and reduces corrosion rates despite the reduction in critical chloride threshold. Most of these results on corrosion performance are mainly from laboratory studies and warrant field evaluation in future. Finally, two case studies demonstrating the application of calcined clay-based concrete in real-world marine exposure conditions are discussed to showcase the promising potential of employing low-purity calcined clay-based concrete for reducing carbon footprint and improving durability performance in chloride exposure.

Funder

National Science Foundation

Engineering and Physical Sciences Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3