Experimental investigation of a keying joint cast in UHPFRC between precast UHPFRC bridge elements

Author:

Bertola Numa J.ORCID,Trinh Ngoc Thanh,Garcia Enrique,Brühwiler Eugen

Abstract

AbstractUltra High-Performance Fiber-Reinforced Cementitious Composite (UHPFRC) is increasingly popular for new structural designs thanks to its high resistance both in tension and compression. When UHPFRC is complemented with steel reinforcing bars or prestressing tendons, the structure remains waterproof and crack-free under service conditions, significantly improving the durability compared to conventional reinforced-concrete designs. The Aiguillon Bridge is one of the first railway bridges entirely made of UHPFRC. Built in 2021 in Switzerland, this bridge has a single span of 6.6 m and a width of 5.4 m. The bridge is designed for a narrow track and 2 walkways. Two prefabricated elements in UHPFRC have been assembled on-site by a longitudinal cast-in-place UHPFRC keying joint. This paper presents the full-scale laboratory experiment to validate the keying joint suitability for railway bridges. This experimental investigation involves a static test on a transverse beam composed of two precast elements and the keying joint. Results show that the structure presents a post-peak ductile behavior as well as an elastic behavior under service loads. Digital-Image-Correlation measurements provide details on the cracking patterns of the interface between the keying joint and the precast elements. As the maximum resistance obtained during the experiment is in agreement with the analytical-model predictions, the concept of the keying joint is validated.

Funder

EPFL Lausanne

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3