Dimensional stability of cement paste and concrete subject to early-age carbonation curing

Author:

Xian Xiangping,Logan Chad,Shao Yixin

Abstract

AbstractEarly-age carbonation curing of concrete is receiving more interest in terms of performance improvement and emission reduction. However, the volume change of cement-based products subject to carbonation curing may become a concern because of the potential carbonation shrinkage and its related shrinkage cracking. The purpose of this study was to investigate the dimensional stability of cement paste and concrete subject to the early-age carbonation curing. It was found that the carbonation curing introduced first an initial shrinkage due to water evaporation upon gas injection and then generated an expansion due to CO2 uptake and carbonate precipitation. As carbonation proceeded, the deformation was switched to a secondary shrinkage after expansion. The residual deformation due to carbonation curing was shrinkage in cement paste samples and expansion in concrete samples. This was because the relative expansion due to carbonate precipitation in paste was not large enough to compensate for the shrinkage caused by water loss. However, for concrete samples, the introduction of aggregates reduced the pore spaces in concrete, leading to an expansion owing to the limited precipitation. The results of carbon dioxide uptake, XRD, and SEM analysis confirmed that calcium carbonate formation played a critical role in the relative expansion. The study also showed that cement-based products were more resistant to weathering carbonation after the early-age carbonation curing. After 61-day weathering carbonation exposure, both paste and concrete samples exhibited carbonation shrinkage as a result of carbonation of hydration products. However, the magnitude of shrinkage was much smaller in carbonation curing than in weathering carbonation because of the short period of exposure. Both carbonations did not significantly affect the compressive strength of carbonated products. Carbonation curing likely makes concrete products more dimensionally stable in the long-term service.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference31 articles.

1. Berger R, Young J, Leung K (1972) Acceleration of hydration of calcium silicates by carbon dioxide treatment. Nature 240(97):16–18

2. Young J, Berger R, Breese J (1974) Accelerated curing of compacted calcium silicate mortars on exposure to CO2. J Am Ceram Soc 57(9):394–397

3. Zhang D, Ghouleh Z, Shao Y (2017) Review on carbonation curing of cement-based materials. J CO2 Util 21:119–131

4. Shideler JJ (1963) Carbonation shrinkage of concrete masonry units. J PCA Res Dev Labs 5(3):36–51

5. Metha PK, Monteiro PJM (1993) Concrete: structure, materials, and properties. Prentice Hall, USA

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3