Reactivation of hydrated cement powder by thermal treatment for partial replacement of ordinary portland cement

Author:

Semugaza GustaveORCID,Mielke Tommy,Castillo Marianela Escobar,Gierth Anne Zora,Tam Joo Xian,Nawrath Stefan,Lupascu Doru C.

Abstract

AbstractCement is the strength-forming component of concrete. It has been a major building material for more than a century. However, its production is accountable for a considerable percentage of global CO2 emissions and is very energy-intensive. The Ordinary Portland Cement (OPC) production is a thermal process at around 1450 °C. This study shows that the reactivation of Hydrated Cement Powder (HCP) can be successful at a much lower temperature. Therefore, the possibility of using HCP to replace parts of OPC in concrete reduces the energy consumption and the CO2 emissions associated with OPC production. HCP, which may ultimately stem from recycled concrete, needs treatment to produce new concrete of the required mechanical strength. Using reactivated HCP in concrete, an optimum strength is achieved by heating the HCP in the range of 400–800 °C. Among other factors, the type of cement used influences the optimum heating temperature and attainable strength. This paper shows that 600 °C is an optimum heating temperature using the OPC type CEM I 52.5R. The crystalline phase transitions resulting from the thermal treatment were analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetry (TG). The heat released during hydration was investigated, and scanning electron microscopy (SEM) displays the microstructure evolution. OPC can be partially replaced by thermally treated HCP in mortar, attaining similar mechanical strength values.

Funder

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3