Attention-based CNN-BiLSTM for Dialect Identification on Javanese Text

Author:

Hidayatullah Ahmad FathanORCID,Cahyaningtyas Siwi,Pamungkas Rheza Daffa

Abstract

This study proposes a hybrid deep learning models called attention-based CNN-BiLSTM (ACBiL) for dialect identification on Javanese text. Our ACBiL model comprises of input layer, convolution layer, max pooling layer, batch normalization layer, bidirectional LSTM layer, attention layer, fully connected layer and softmax layer. In the attention layer, we applied a hierarchical attention networks using word and sentence level attention to observe the level of importance from the content. As comparison, we also experimented with other several classical machine learning and deep learning approaches. Among the classical machine learning, the Linear Regression with unigram achieved the best performance with average accuracy of 0.9647. In addition, our observation with the deep learning models outperformed the traditional machine learning models significantly. Our experiments showed that the ACBiL architecture achieved the best performance among the other deep learning methods with the accuracy of 0.9944.

Publisher

Universitas Muhammadiyah Malang

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Corpus creation and language identification for code-mixed Indonesian-Javanese-English Tweets;PeerJ Computer Science;2023-06-22

2. Closely related Indonesian language identification using deep learning;VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3