Increasing Smoke Classifier Accuracy using Naïve Bayes Method on Internet of Things

Author:

Putrada Alieja Muhammad,Abdurohman Maman,Putrada Aji Gautama

Abstract

This paper proposes fire alarm system by implementing Naïve Bayes Method for increasing smoke classifier accuracy on Internet of Things (IoT) environment. Fire disasters in the building of houses are a serious threat to the occupants of the house that have a hazard to the safety factor as well as causing material and non-material damages. In an effort to prevent the occurrence of fire disaster, fire alarm system that can serve as an early warning system are required. In this paper, fire alarm system that implementing Naïve Bayes classification has been impelemented. Naïve Bayes classification method is chosen because it has the modeling and good accuracy results in data training set. The system works by using sensor data that is processed and analyzed by applying Naïve Bayes classification to generate prediction value of fire threat level along with smoke source. The smoke source was divided into five types of smoke intended for the classification process. Some experiments have been done for concept proving. The results show the use of Naïve Bayes classification method on classification process has an accuracy rate range of 88% to 91%. This result could be acceptable for classification accuracy.

Publisher

Universitas Muhammadiyah Malang

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A technique for Spatial Data Classification Method Using Random Forest based Correlation;International Journal of Next-Generation Computing;2022-04-01

2. Framing Fire Detection System of Higher Efficacy Using Supervised Machine Learning Techniques;Advances in Applications of Data-Driven Computing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3