Generalized approach to sentiment analysis of short text messages in natural language processing

Author:

Polyakov Evrenii,Voskov Leonid,Abramov Pavel,Polyakov Sergey

Abstract

Introduction: Sentiment analysis is a complex problem whose solution essentially depends on the context, field of study andamount of text data. Analysis of publications shows that the authors often do not use the full range of possible data transformationsand their combinations. Only a part of the transformations is used, limiting the ways to develop high-quality classification models.Purpose: Developing and exploring a generalized approach to building a model, which consists in sequentially passing throughthe stages of exploratory data analysis, obtaining a basic solution, vectorization, preprocessing, hyperparameter optimization, andmodeling. Results: Comparative experiments conducted using a generalized approach for classical machine learning and deeplearning algorithms in order to solve the problem of sentiment analysis of short text messages in natural language processinghave demonstrated that the classification quality grows from one stage to another. For classical algorithms, such an increasein quality was insignificant, but for deep learning, it was 8% on average at each stage. Additional studies have shown that theuse of automatic machine learning which uses classical classification algorithms is comparable in quality to manual modeldevelopment; however, it takes much longer. The use of transfer learning has a small but positive effect on the classificationquality. Practical relevance: The proposed sequential approach can significantly improve the quality of models under developmentin natural language processing problems.

Publisher

State University of Aerospace Instrumentation (SUAI)

Subject

Control and Optimization,Computer Science Applications,Human-Computer Interaction,Information Systems,Control and Systems Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI Incorporating NLP – to Boldly Go, Where No Algorithms Have Gone Before;Lecture Notes in Networks and Systems;2024

2. REVIEW OF METHODS FOR DETERMINING THE TONATION OF TEXTS IN NATURAL LANGUAGES;Bulletin of Shakarim University. Technical Sciences;2023-03-31

3. Knowledge Retrieval and Relation Mining from Tolkien’s History of Middle Earth;2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo);2022-11-21

4. NLP based Model for Classification of Complaints: Autonomous and Intelligent System;2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2);2022-05-24

5. Egyptian Student Sentiment Analysis Using Word2vec During the Coronavirus (Covid-19) Pandemic;Advances in Intelligent Systems and Computing;2020-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3