Performance Evaluation of Convolutional Networks on Heterogeneous Architectures for Applications in Autonomous Robotics

Author:

Guajo JoaquínORCID,Alzate-Anzola CristianORCID,Castaño-Londoño LuisORCID,Márquez-Viloria DavidORCID

Abstract

Humanoid robots find application in human-robot interaction tasks. However, despite their capabilities, their sequential computing system limits the execution of computationally expensive algorithms such as convolutional neural networks, which have demonstrated good performance in recognition tasks. As an alternative to sequential computing units, Field-Programmable Gate Arrays and Graphics Processing Units have a high degree of parallelism and low power consumption. This study aims to improve the visual perception of a humanoid robot called NAO using these embedded systems running a convolutional neural network. The methodology adopted here is based on image acquisition and transmission using simulation software: Webots and Choreographe. In each embedded system, an object recognition stage is performed using commercial convolutional neural network acceleration frameworks. Xilinx® Ultra96™, Intel® Cyclone® V-SoC and NVIDIA® Jetson™ TX2 cards were used, and Tinier-YOLO, AlexNet, Inception-V1 and Inception V3 transfer-learning networks were executed. Real-time metrics were obtained when Inception V1, Inception V3 transfer-learning and AlexNet were run on the Ultra96 and Jetson TX2 cards, with frame rates between 28 and 30 frames per second. The results demonstrated that the use of these embedded systems and convolutional neural networks can provide humanoid robots such as NAO with greater visual recognition in tasks that require high accuracy and autonomy.

Publisher

Instituto Tecnologico Metropolitano (ITM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Model for the Recognition of Its Environment of an Intelligent System;Communications in Computer and Information Science;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3