In-Situ Characterization of 1-Hexene Concentration with a Helium-Neon Laser in the presence of a Solid Catalyst

Author:

Lacayo Juan GuillermoORCID,López SebastianORCID,Soto DavidORCID,Molina AlejandroORCID

Abstract

This study provides evidence that a helium-neon (He-Ne) laser operating in the Mid-infrared (MIR) at a wavelength of 3.39 μm can detect variations in 1-hexene concentration in the presence of a solid catalyst. The in-situ and online characterization of the concentration of 1-hexene, as an example of a hydrocarbon, is relevant to enhance the current understanding of the interaction between hydrodynamics and chemistry in different heterogeneous catalytic processes. We designed and built a laboratory-scale downer unit that enabled us to analyze heterogeneous catalytic reactions and provided optical access. The lab-scale reactor was 180-cm long, had an internal diameter of 1.3 cm, and was made of fused quartz to allow the passage of the laser beam. 1-hexene was carefully measured, vaporized, and fed into the reactor through two inlets located at an angle of 45 degrees from the vertical descendent flow and 70 cm below the input of a solid catalyst and a purge flow entraining N2. A system of five heaters, which can be moved in the vertical direction to allow the passage of the laser beam, guaranteed temperatures up to 823 K. Computational Fluid Dynamics (CFD) simulations of the hydrodynamics of the system indicated that a uniform temperature profile in the reaction section was reached after the catalyst and the feed mixed. The estimated catalyst to oil ratio and time on stream in the experiments were, respectively, 0.4 to 1.3 and 2 s. After a correction for laser power drift, the experimental results showed a linear response of the fractional transmission to the 1-hexene concentration that was independent of temperature in the 373 K–673 K range. Even in the presence of a catalyst, the absorption of 1-hexene at the MIR frequency of the laser was high enough to enable the detection of 1-hexene since the fractional absorption of the absorbing path length in these experiments was close to zero (0.013 m) and the 1-hexene concentrations were higher than 1.254 × 10-5 mol/cm3. This result demonstrated the ability of the laser system to measure the concentration of 1-hexene in the presence of a catalyst and indicates that it can be used to better decouple hydrodynamics from kinetics in heterogeneous catalytic processes.

Publisher

Instituto Tecnologico Metropolitano (ITM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3