Effect of Rubidium Fluoride on Grain Sintering and Optoelectronic Properties of Nanostructured CuInSe2 Thin Films Obtained by Solution Processing

Author:

Ruiz JhoanORCID,Murray Anna,Handwerker CarolORCID,Ramírez DanielORCID,Agrawal RakeshORCID

Abstract

Chalcopyrite CuInSe2 (CISe) and Cu(In, Ga)(S, Se)2 (CIGS) absorber layers, have emerged as promising alternatives in the solar cell field due to their unique properties such as power conversion efficiencies (PCEs) above 20 %, direct bandgap, and high absorption coefficient. This enables the making of high-quality PV devices with absorbers from 2 μm thick, significantly reducing the use of raw materials. Additionally, the CISe absorber layer is a desirable material for Perovskite/CIS tandem configuration with a narrow band gap at the bottom that has demonstrated PCEs close to 25 %, and potential applications in lightweight and/or flexible substrates. Recently, the addition of alkali elements such as sodium, potassium, rubidium, and cesium via post-deposition techniques (PDTs) has demonstrated an improvement in CIGS-based solar cells’ performance. In this study, 10, 20, and 30 nm thick layers of rubidium fluoride were post-deposited on CISe-films made by solution processing techniques and then selenized under a selenium-argon atmosphere to improve the CISe photoelectronic properties such as the number of charge carriers collected and grain growth, critical characteristics to ensure useful photovoltaic devices. Thus, the effect of rubidium fluorine on CISe-based solar cells was analyzed using several characterization techniques. According to the results, thin films made by an amine-thiol mixture with uniform atomic composition were obtained. The crystallinity and grain growth improved with an increase in rubidium fluoride addition. Moreover, with 10 nm of rubidium fluoride, an improvement in the lifetime of the charge carrier, photoluminescence intensity, and the number of carriers collected by the solar cells was obtained.

Publisher

Instituto Tecnologico Metropolitano (ITM)

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3