Semiotics: An Approach to Model Security Scenarios for IoT-Based Agriculture Software

Author:

Hurtado Julio ArielORCID,Antonelli LeandroORCID,López SantiagoORCID,Gómez AdrianaORCID,Delle Ville JulianaORCID,Maltempo GiulianaORCID,Zambrano Frey GiovannyORCID,Solis AndrésORCID,Camacho Marta CeciliaORCID,Solinas MiguelORCID,Kaplan GladysORCID,Muñoz FreddyORCID

Abstract

Agriculture is a vital human activity that contributes to sustainable development. A few decades ago, the agricultural sector adopted the Internet of Things (IoT), which has played a relevant role in precision and smart farming. The IoT developments in agriculture require that numerous connected devices work cooperatively. This increases the vulnerability of IoT devices, mainly because they lack the necessary built-in security because of their context and computational capacity. Other security threats to these devices are related to data storage and processing connected to edge or cloud servers. To ensure that IoT-based solutions meet functional and non-functional requirements, particularly those concerning security, software companies should adopt a security-focused approach to their software requirements specification. This paper proposes a method for specifying security scenarios, integrating requirements and architecture viewpoints into the context of IoT for agricultural solutions. The method comprises four steps: (i) describe scenarios for the intended software, (ii) describe scenarios with incorrect uses of the system, (iii) translate these scenarios into security scenarios using a set of rules, and (iv) improve the security scenarios. This paper also describes a prototype application that employs the proposed algorithm to strengthen the incorrect use scenario based on the correct use scenario. Then, the expert can complete the information for the analysis and subsequent derivation of the security scenario. In addition, this paper describes a preliminary validation of our approach. The results show that the proposed approach enables software engineers to define and analyze security scenarios in the IoT and agricultural contexts with good results. A survey administered to five security experts found that the proposed security scenario method is generally useful for specifying agricultural IoT solutions but needs improvement in different areas.

Publisher

Instituto Tecnologico Metropolitano (ITM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3