EFFECTS OF ULTRAVIOLET C (UVC) LIGHT AND DRY HEAT ON FILTRATION PERFORMANCE OF N95 RESPIRATOR MASK

Author:

Hanyanunt Patomroek,Juntanawiwat Piraporn,Chatreewonanakul Tassananwan,Potisuwan Patsanun,Simsiriporn Waristha,Phondee Saowaluck,Sungsirin Nitchatorn,Kesakomol Piyanate,Watanaveeradej Veerachai,Boonsiri Tanit

Abstract

Background: The emergence of the Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) creates one of the most pressing issues with a severe shortage of personal protective equipment (PPE) particularly N95 respirators in healthcare settings worldwide. Recently, possible strategies to decontaminate disposable N95 respirators, including using ultraviolet C (UVC) irradiation and heat treatment, were reported to consider safely reusing the respirators. However, both methods create potential risks to reduce the ability of the respirator filter especially when exposed to these methods multiple times resulting in infectious agents passing through the filter. Objective: The study aimed to ensure the effectiveness of UVC and dry heat to decontaminate N95 respirators. Methods: N95 respirators were exposed continually to UVC and dry heat at 70°C. Then the ability of the aerosol penetration was assessed by introducing an aerosol containing a rotavirus used as a delegate for SARS-CoV2. The existence of the rotavirus at both external (front) and internal surfaces (back) of the N95 respirators was investigated using RT-PCR. Results: UVC and dry heat administered at a 30-minute cycle up to 5 cycles did not change the filtration performance of the N95 respirators. Our results suggested that the reuse of disposable N95 respirators decontaminated by either UVC or dry heat could be possible under the test conditions used. Conclusion: To reuse N95 respirators, UVC and dry heat were useful to apply amid the pandemic of respiratory diseases.

Publisher

Phramongkutklao Hospital Foundation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3