Publisher
The Society of Korea Industrial and Systems Engineering
Reference28 articles.
1. Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N., and Genc, U., Anomalib: A deep learning library for anomaly detection, International Conference on Image Processing, 2022, pp. 1706-1710.
2. Batzner, Kilian, Lars Heckler, and Rebecca König, Efficientad: Accurate visual anomaly detection at millisecond-level latencies, ArXiv: 2303.14535, 2023.
3. Bergmann, P., Fauser, M., Sattlegger, D., and Steger, C., MVTec AD-A comprehensive real-world dataset for unsupervised anomaly detection, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9592-9600.
4. COHEN, Niv; HOSHEN, and Yedid, Sub-image anomaly detection with deep pyramid correspondences, ArXiv: 2005.02357, 2020.
5. Cui, Y., Liu, Z., and Lian, S., A Survey on Unsupervised Anomaly Detection Algorithms for Industrial Images, IEEE Access, 2023.