FEATURE EXTRACTION ALGORITHM USING NEW CEPSTRAL TECHNIQUES FOR ROBUST SPEECH RECOGNITION

Author:

Amara korba Mohamed Cherif,Bourouba Houcine,Djemili Rafik

Abstract

In this work, we propose a novel feature extraction algorithm that improves the robustness of automatic speech recognition (ASR) systems in the presence of various types of noise. The proposed algorithm uses a new cepstral technique based on the differential power spectrum (DPS) instead of the power spectrum (PS), the algorithm replaces the logarithmic non linearity by the power function. In order to reduce cepstral coefficients mismatches between training and testing conditions, we used the mean and variance normalization, then we apply auto-regression movingaverage filtering (MVA) in the cepstral domain. The ASR experiments were conducted using two databases, the first is LASA digit database designed for recognition the isolated Arabic digits in the presence of different types of noise. The second is Aurora 2 noisy speech database designed to recognize connected English digits in various operating environments. The experimental results show a substantial improvement from the proposed algorithm over the baseline Mel Frequency Cepstral Coefficients (MFCC), the relative improvement is the 28.92% for LASA database and is the 44.43% for aurora 2 database. The performance of our proposed algorithm was tested and verified by extensive comparisons with the state-of-the-art noise-robust features in aurora 2.

Publisher

Univ. of Malaya

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3