VARIANTS OF NEURAL NETWORKS: A REVIEW

Author:

Nayef Bahera Hani,Sheikh Abdullah Siti Norul Huda,Sulaiman Rossilawati,Alyasseri Zaid Abdi Al Kareem

Abstract

Machine learning (ML) techniques are part of artificial intelligence. ML involves imitating human behavior in solving different problems, such as object detection, text handwriting recognition, and image classification. Several techniques can be used in machine learning, such as Neural Networks (NN). The expansion in information technology enables researchers to collect large amounts of various data types. The challenging issue is to uncover neural network parameters suitable for object detection problems. Therefore, this paper presents a literature review of the latest proposed and developed components in neural network techniques to cope with different sizes and data types. A brief discussion is also introduced to demonstrate the different types of neural network parameters, such as activation functions, loss functions, and regularization methods. Moreover, this paper also uncovers parameter optimization methods and hyperparameters of the model, such as weight, the learning rate, and the number of iterations. From the literature, it is notable that choosing the activation function, loss function, number of neural network layers, and data size is the major factor affecting NN performance. Additionally, utilizing deep learning NN resulted in a significant improvement in model performance for a variety of issues, which became the researcher's attention.

Publisher

Univ. of Malaya

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3