FUZZY ADAPTIVE WHALE OPTIMIZATION ALGORITHM FOR NUMERIC OPTIMIZATION

Author:

Kaya Ersin,Kılıç Alper,Babaoğlu İsmail,Babalık Ahmet

Abstract

Meta-heuristic approaches are used as a powerful tool for solving numeric optimization problems. Since these problems are deeply concerned with their diversified characteristics, investigation of the utilization of algorithms is significant for the researchers. Whale optimization algorithm (WOA) is one of the novel meta-heuristic algorithms employed for solving numeric optimization problems. WOA deals with exploitation and exploration of the search space in three stages, and in every stage, all dimensions of the candidate solutions are updated. The drawback of this update scheme is to lead the convergence of the algorithm to stack. Some known meta-heuristic approaches treat this issue by updating one or a predetermined number of dimensions in their update scheme. To improve the exploitation behavior of WOA, a fuzzy logic controller (FLC) based adaptive WOA (FAWOA) is suggested in this study. An FLC realizes the update scheme of WOA, and the proposed FLC determines the rate of the change in terms of dimension. The suggested FAWOA is evaluated using 23 well-known benchmark problems and compared with some other meta-heuristic approaches. Considering the benchmark problems, FAWOA achieves best results on 11 problem and only differential evaluation algorithm achieve best results on 10 problems. The rest of the algorithms couldn’t achieve the best results on not more than 5 problems. Besides, according to the Friedman and average ranking tests, FAWOA is the first ranked algorithm for solving the benchmark problems. Evaluation results show that the suggested FAWOA approach outperforms the other algorithms as well as the WOA in most of the benchmark problems.

Publisher

Univ. of Malaya

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3