EXPERT RECOMMENDATION THROUGH TAG RELATIONSHIP IN COMMUNITY QUESTION ANSWERING

Author:

Anandhan Anitha,Ismail Maizatul Akmar,Shuib Liyana

Abstract

Community Question Answering (CQA) services are technical discussion forums websites on social media that serve as a platform for users to interact mainly via question and answer. However, users of this platform have posed dissatisfaction over the slow response and the preference for user domains due to the overwhelming information in CQA websites. Numerous past studies focusing on expert recommendation are solely based on the information available from websites where they rarely account for the preference of users’ domain knowledge. This condition prompts the need to identify experts for the questions posted on community-based websites. Thus, this study attempts to identify ranking experts’ derived from the tag relationship among users in the CQA websites to construct user profiles where their interests are realized in the form of tags. Experts are considered users who post high-quality answers and are often recommended by the system based on their previous posts and associated tags. These associations further describe tags that often co-occur in posts and the significant domains of user interest. The current study further explores this relationship by adopting the “Tag Relationship Expert Recommendation (TRER)” method where Questions Answer (QA) Space is utilized as a dataset to identify users with similar interests and subsequently rank experts based on the tag-tag relationship for user’s question. The results show that the TRER method outperforms existing baseline methods by effectively improving the performance of relevant domain experts in CQA, thereby facilitating the expert recommendation process in answering questions posted by technical and academic professionals.

Publisher

Univ. of Malaya

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MOBILE PHONE RECOMMENDER USING MULTI CRITERIA DECISION MAKING ALGORITHM;Malaysian Journal of Computer Science;2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3