SELF-ORGANIZING RESERVOIR NETWORK FOR ACTION RECOGNITION

Author:

Lee Gin Chong,Loo Chu Kiong,Liew Wei Shiung

Abstract

Current research in human action recognition (HAR) focuses on efficient and effective modelling of the temporal features of human actions in 3-dimensional space. Echo State Networks (ESNs) are one suitable method for encoding the temporal context due to its short-term memory property. However, the random initialization of the ESN's input and reservoir weights may increase instability and variance in generalization. Inspired by the notion that input-dependent self-organization is decisive for the cortex to adjust the neurons according to the distribution of the inputs, a Self-Organizing Reservoir Network (SORN) is developed based on Adaptive Resonance Theory (ART) and Instantaneous Topological Mapping (ITM) as the clustering process to cater deterministic initialization of the ESN reservoirs in a Convolutional Echo State Network (ConvESN) and yield a Self-Organizing Convolutional Echo State Network (SO-ConvESN). SORN ensures that the activation of ESN’s internal echo state representations reflects similar topological qualities of the input signal which should yield a self-organizing reservoir. In the context of HAR task, human actions encoded as a multivariate time series signals are clustered into clustered node centroids and interconnectivity matrices by SORN for initializing the SO-ConvESN reservoirs. By using several publicly available 3D-skeleton-based action recognition datasets, the impact of vigilance threshold and reservoir perturbation of SORN in performing clustering, the SORN reservoir dynamics and the capability of SO-ConvESN on HAR task have been empirically evaluated and analyzed to produce competitive experimental results.

Publisher

Univ. of Malaya

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3