CONNECTING USER PROFILES OF SOCIAL NETWORKS USING PROXIMITY-BASED CLUSTERING

Author:

C Rashmi,Kodabagi Mallikarjun M

Abstract

The establishment of connections among social network users using their profile information is an important task in social network analysis, which facilitates the development of various technological solutions such as stock market analysis, crime detection, tracking system of fraudulent events, etc. In this work, a proximity-based clustering method for networking LinkedIn profiles is presented. The proposed system computes proximity value between users using various attributes of user profiles. The proximity measures are computed by analyzing unstructured data of user profiles to connect users. The method addresses various issues such as comparison of familiar sentences, finding patterns, and sub-patterns among user profiles, assigning weights on attributes similarity, and computing total similarity which is associated with unstructured data. After computing proximity measures on various attributes of user profiles, the connecting edges between nodes are determined by employing artificial intelligence and a network graph is formed. The method is evaluated on a LinkedIn data-set to form a connected graph. The strength of the proposed methodology lies in the formation of multi-layered network graphs, as it uses various attributes of the user profiles to connect them. The proposed methodology helps various applications like recommendation systems to form network graphs of selected attributes and perform the social network analysis. The method achieves an accuracy of 96%. However, the profiles containing abbreviations of important information are not matched and the system accuracy drops down in such cases.

Publisher

Univ. of Malaya

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Node Similarity Measure for Efficient Email Classification;2023 2nd International Conference for Innovation in Technology (INOCON);2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3