The activity of bioactive compounds from bidara upas (Merremia mammosa (Lour) Hall. f.) as an inhibitor of SARS-CoV2 entry stage: In silico study

Author:

Purwitasari NenyORCID,Agil Mangestuti,Siswodihardjo SiswandonoORCID,Maulana SaipulORCID,Zubair Muhammad SulaimanORCID

Abstract

Background: Covid 19 is a global pandemic caused by SARS-CoV2, a novel coronavirus. This virus enters target organ epithelial cells by utilising two host proteins; Transmembrane Serine Protease 2 (TMPRSS2) and Angiotensin Converting Enzyme 2 (ACE2). The inhibition of TMPRSS2 has shown to be a promising means to prevent viral infection. Molecular docking, and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis will determine the activity of Merremia mammosa (Lour) Hall.f. secondary metabolites against the TMPRSS2 of SARS-CoV2.     Objective: This study aimed to investigate the in silico activity of Merremia mammosa (Lour) Hall.f. active compounds against TMPRSS2 of SARS-CoV2. Method: Molecular docking was performed on 206 compounds obtained through metabolite profiling from a previous study on the SARS-CoV TMPRSS-2 protein (PDB id.7MEQ) using the Maestro Schrodinger software. Result: The results indicated there were 6 compounds (three of which were flavonoids: cynarine, phellodensin F, and gemixanthone A) with docking scores lower than standard drugs (nafamostat as a native ligand). ADMET analysis revealed that among 6 compounds, cynarine has the highest drug-likeness and the greatest inhibitory potential against TMPRSS2. Conclusion: Cynarine was found to be active and promising to be developed as an inhibitor of the SARS-CoV2 entry step.

Publisher

International Pharmaceutical Federation (FIP)

Subject

Pharmaceutical Science,Pharmacy,Education,Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3