Investigating the anti-allergic activity of Phyllanthus niruri via MALT1 protease inhibition: An in silico approach
-
Published:2023-10-10
Issue:4
Volume:23
Page:196-202
-
ISSN:1477-2701
-
Container-title:Pharmacy Education
-
language:
-
Short-container-title:Pharm Educ
Author:
Marhaeny Honey DzikriORCID,
Aliyah Alma NurilORCID,
Miatmoko AndangORCID,
Khotib JunaidiORCID
Abstract
Background: Allergic inflammation is a condition caused by complex interactions between several inflammatory cells in the body. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a cysteine protease that bridges innate and adaptive immune responses in allergic inflammation. MALT1 protease inhibition is a potential strategy for controlling IgE-mediated allergic disease. P. niruri is a medicinal plant with anti-allergic properties.
Objective: This study aimed to evaluate the anti-allergic activity of P. niruri secondary metabolites against MALT1 protease through in silico approach.
Method: Physicochemical properties and drug-likeness evaluation were determined using SwissADME. The toxicity properties prediction was analysed using pkCSM. AutoDock Vina was used to evaluate the best binding energy of the compounds against the receptor (PDB ID: 3V4O and 4I1R). Visualisation was obtained using Biovia discovery studio visualiser.
Result: Docking analysis showed that ten of 21 compounds have lower binding affinity than the native ligand and reference drugs at the 3V4O receptor. At the 4I1R receptor, only three compounds have a lower binding affinity than its native ligand, but only one compound has a lower binding affinity than all reference drugs.
Conclusion: Several P. niruri secondary metabolites were potentially predicted to be developed as MALT1 protease inhibitory agents.
Publisher
International Pharmaceutical Federation (FIP)
Subject
Pharmaceutical Science,Pharmacy,Education,Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management