Enhancing students’ experimental knowledge with active learning in a pharmaceutical science laboratory

Author:

Anakin Megan1ORCID,McDowell Arlene1ORCID

Affiliation:

1. University of Otago, New Zealand

Abstract

Objective: The study aimed to examine if an active learning approach used in a pharmaceutical science laboratory would enhance pharmacy students’ learning of foundation pharmaceutical science knowledge when conducting an experiment. Method: A pre-post-test study design was used to collect data from third-year undergraduate pharmacy students with two approaches to performing an experiment (active learning, and traditional). Results: Assessment data from 95 students (73% response rate) were analysed quantitatively and qualitatively. The active learning approach to performing an experiment resulted in significantly higher (p<0.001) scores compared to the traditional approach for knowledge about the variables to be measured (3.82 versus 2.72 for active and traditional, respectively) and measurement method (3.31 versus 2.85 for active and traditional, respectively). A thematic analysis identified ‘planning’ as unique to the post-test responses for the active learning session. Conclusion: The authors concluded that the laboratory session featuring active learning had a greater impact on student learning than the traditional experiment method.

Publisher

International Pharmaceutical Federation (FIP)

Subject

Pharmaceutical Science,Pharmacy,Education

Reference24 articles.

1. Accreditation Council for Pharmacy Education. (2016). Accreditation standards and key elements for the professional program in pharmacy leading to the doctor of pharmacy degree. Chicago, IL: Accreditation Council for Pharmacy Education (online). Available at: https://www.acpe-accredit.org/

2. Arthur, P., Ludwig, M., Castelli, J., Kirkwood, P., & Attwood, P. (2016). Prepare, Do, Review: A skills‐based approach for laboratory practical classes in biochemistry and molecular biology. Biochemistry and Molecular Biology Education, 44(3), 276-287. https://doi.org/10.1002/bmb.20951

3. Australian Pharmacy Council. (2020). Accreditation Standards for Pharmacy Programs in Australia and New Zealand 2020 Performance Outcomes Framework. Canberra, Australia: Australian Pharmacy Council. Available at: https://www.pharmacycouncil.org.au/resources/pharmacy-program-standards/

4. Biggs, J.B., & Collis, K.F. (1982). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed Learning Outcome). New York, NY: Academic Press

5. Cavinato, A.G. (2017). Challenges and successes in implementing active learning laboratory experiments for an undergraduate analytical chemistry course. Analytical and Bioanalytical Chemistry, 409(6), 1465-1470. https://doi.org/10.1007/s00216-016-0092-x

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3