1. Mixed vine copula flows for flexible modeling
of neural dependencies;Mitskopoulos;Frontiers in Neuroscience,2022
2. Vine Copula Based Modeling;Czado;Annual Review of Statistics and Its
Application,2021
3. Hofert, M., Kojadinovic, I.,
Maechler, M., & Yan, J. (2023). Copula: Multivariate dependence with
copulas.
https://CRAN.R-project.org/package=copula
4. Nagler, T., Schepsmeier, U., Stoeber,
J., Brechmann, E. C., Graeler, B., Erhardt, T., Almeida, C., Min, A.,
Czado, C., Hofmann, M., Killiches, M., Joe, H., & Vatter, T. (2023).
VineCopula: Statistical inference of vine copulas.
https://cran.r-project.org/web/packages/VineCopula/index.html
5. Bevacqua, E. (2017).
CDVineCopulaConditional: Sampling from conditional c- and d-vine
copulas.
https://CRAN.R-project.org/package=CDVineCopulaConditional