1. Paszke, A., Gross, S., Massa, F.,
Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S.
(2019). PyTorch: An imperative style, high-performance deep learning
library (H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, & R. Garnett, Eds.; p. 80248035). Curran Associates, Inc.
Curran Associates, Inc.
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
2. Oliphant, T. E. (2006). A guide to
NumPy (Vol. 1). Trelgol Publishing USA.
3. TensorFlow: Large-scale machine learning on
heterogeneous systems;Abadi,2015
4. Sccn/liblsl: v1.16.2;Kothe,2023
5. AntroPy: Entropy and complexity of (EEG)
time-series in Python;Vallat;GitHub repository,2023