Response of heat-stress tolerant and susceptible wheat lines in diverse planting environments by using parametric stability models

Author:

Zulkiffal M.,Ahmed J.,Riaz M.,Ramzan Y.,Ahsan A.,Kanwal A.,Ghafoor I.,Nadeem M.,Abdullah M.

Abstract

In Pakistan, wheat planting is delayed because of dawn sowing, which reduces yield due to terminal heat stress. This effect can be alleviated by changing sowing times. Therefore, parametric stability analysis was carried out with eight different sowing dates (environments), namely, early, normal, late, and very late, with 10-day intervals in 2019–2020 and 2020–2021 at the Wheat Research Institute, Faisalabad, Pakistan. Significant heat stress responses were observed at the latter two sowing dates. The genetic and phenotypic relationship among the traits revealed that the normalized vegetation index (NI) had a positive correlation with grain yield (kg ha−1) (Yi) and 1000-grain weight (g) (GrWt). However, canopy temperature (CaTe) had a negative correlation with Yi, GrWt, and NI. For Yi and GrWt, the linear environmental response (α) and deviation from linear response (λ) were observed as transformed forms of regression coefficient (bi) and deviation from regression (S2d). Planting dates, i.e., E1, E6, and E7, had slight effects on Yi, and E6, E7, E2, and E8 had slight effects on GrWt. Meanwhile, E3, E4, E5, E1, E3, and E4 exerted a strong effect on the genotype by environment interactions for Yi and GrWt. For Yi, lines G23, G20, and G21 were adapted to E8; G9 and G19 were adapted to E1; and G15, G17, and G22 were adapted to E5. For GrWt, G13, G20, G3, G11, G21, and G15 were adapted to E8 and E4; G10, G7, G8, and G5 were adapted to E5; G4, G22, and G17 were adapted to E6 and E4; and G24 and G2 were adapted to E2 and E3. The candidate wheat lines with enhanced GrWt and Yi were found in E5 and E6 (late sowing) and E7 and E8 (very late) and presented tolerance to terminal heat stress.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3