EFFECTS OF ELEVATED PLANT DENSITY AND REDUCED NITROGEN ON AGRONOMIC AND YIELD ATTRIBUTES OF MAIZE INBRED LINES AND THEIR DIALLEL CROSSES

Author:

AL-NAGGAR AMM,SHABANA MRA,HASSANEIN MS,METWALLY AMA

Abstract

Elevating plant density and improving N fertilizer rate for high density-tolerant genotype can maximize maize (Zea mays L.) grain productivity per unit land area. This investigation’s objective sought to evaluate the effects of stresses resulting from increasing plant density combined with reducing N application rate on traits of eight inbred lines and their diallel F1 crosses. Choosing eight maize inbred lines differing in tolerance to low N and high density (D) were samples for diallel crosses. Parents and crosses’ evaluation ensued in the 2020 and 2021 seasons under three plant densities: low (47,600), medium (71,400), and high (95,200) plants/ha, and three N fertilization rates: low (95 kg N/ha), medium (285 kg N/ha), and high (476 kg N/ha). Elevating plant density from 47,600 to 71,400 and 95,200 plants/ha caused a significant decrease in grain yield/plant by 25.43% and 30.15% for inbred parents and 17.92% and 25.65% for F1 crosses, respectively. This reduction correlated with significant decreases in all yield components but caused a notable increase in grain yield/ha by 13.69% and 27.33% for inbreds and 20.99% and 44.69% for F1 crosses, respectively. The best combination of plant population density and N level for giving the highest grain yield/ha was high N (476 kg N/ha) × high density (95,200 plants/ha) for all inbreds and all F1 crosses.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3