STRUCTURAL-AGGREGATE COMPOSITION AND SOIL WATER RESISTANCE BASED ON TILLAGE REGIMES IN SOUTHEAST KAZAKHSTAN

Author:

ZHAPAYEV RK,KUNPIYAEVA GT,OSPANBAYEV SH,SEMBAYEVA AS,IBASH ND,MUSTAFAEV MG,KHIDIROV AE

Abstract

The promotion and rational development of drylands employed two tillage regimes (plowing to 20–22 cm and no-till) during the spring wheat and barley cultivation in Southeast Kazakhstan. The results established that the no-till scheme contributed to forming an excellent aggregate state of the arable soil layer for spring wheat and barley (65%–69%). The water-resistant aggregates were the highest with no-tillage (19.3%–21.8%), indicating the unsatisfactory water resistance of the soil structure. Enhancing the water-resistant aggregates requires using organic fertilizers to improve the establishment of perennial grasses, green manuring, and cover crops. No-till system inclined to boost the optimal soil density from a loose and slightly compact state of 1.19–1.23 g/cm3 to a dense 1.32–1.39 g/cm3. According to crop cultivar and tillage methods, the spring wheat and barley grain yield varied between 2.84 and 3.89 t/ha. High grain yield came from the spring barley cultivar Symbat. Spring showed promising performance when the plowing level was 20–22 cm and inferior only by 0.25 and 0.15 t/ha with no-till. Based on the two-factor analysis of variance, the cultivar contribution to the spring wheat and barley grain yield buildup depended on the shares of crop season of the research (year – environment) (40.9%–62.2%) and the tillage regimes (22.4%–32.2%). The grain yield formation was more dependent on the studied crops and their cultivars, and the dependence increased over the crop seasons due to weather conditions during the crop period.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3