PHENOLOGY, CROP STAND, AND DRY MATTER PRODUCTION OF WHEAT IN RESPONSE TO BENEFICIAL MICROBES AND ORGANIC MATTER SOURCES

Author:

KHAN S,KHAN A,NADEEM T,AKBAR H,HUSSAIN Z

Abstract

Adding organic matter to soil proved an efficient strategy for restoring soil fertility and improving crop dry matter – an indicator of yield potential. In this regard, evaluating the sources of organic matter (OM) (control, poultry manure [PM], farmyard manure [FYM], compost, and mungbean residues [MR]) to provide 120 kg N ha-1 and effective microbes (EM) (0, 100, 200, and 300 L ton-1 of OM) as 2% solution proceeded in field conditions during 2017–2019. The sowing of wheat seeds (cv. Pirsabak 2015) at 120 kg ha-1 took place in the field using RCB design with four replications. Results showed that PM/FYM had delayed the phenology and improved the biomass-related parameters, dry matter (DM) accumulation, and crop growth rate (CGR) more than compost and MR. However, the results were more pronounced when applied with 300 L EM ton-1 of OM from the PM. The maximum DM (55%) accumulation in plant parts occurred beyond 100 days after sowing (DAS). A marked increase in DM and CGR beyond 60 DAS and a reduction in CGR beyond 120 DAS appeared irrespective of treatments. In the case of EM, the 300 L ton-1 revealed superior in terms of growth, DM accumulation, CGR, and delayed phenology. Structural equation modeling suggested that DM production gained a direct effect from crop phenology (46.1%) and crop stand (30.4%) but no indirect effect from crop growth (24.8%). In conclusion, the 300 L EM ton-1 of OM applied to PM or FYM had improved the crop stand, development, and DM production in wheat.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3