SERRATIA MARCESCENS STRAIN FA-4 ENHANCES ZINC CONTENT IN RICE GRAINS BY ACTIVATING THE ZINC TRANSLOCATING ENZYMES

Author:

SHAKEEL M,HAFEEZ FY,MALIK IR,FARID A,ULLAH H,AHMED I,GUL H,MOHIBULLAH M,YASIN M

Abstract

Zinc deficiency in cereal crops is a significant issue for human health. Rice, being a staple food crop, could cause severe zinc deficiency. The use of zinc-solubilizing bacteria (ZSB) is an ecological tactic to raise bioavailable zinc in the soil that may alleviate yield loss and, subsequently, enhance the nutritional value of rice. In the presented study, treating rice plants with plant growth-promoting rhizobacteria S. marcescens FA-4 along with the recommended dose of chemical Zn and half dose of chemical Zn ensued under pot and field conditions at the COMSATS University, Islamabad, Pakistan. The obtained data indicated an augmentation in rice growth, yield, and grain zinc content in response to the S. marcescens FA-4 inoculation with and without the chemical Zn application. The S. marcescens FA-4 significantly enhanced the grain zinc content (21.4–27.7 mg kg-1) under the pot and (18.7–30.1 mg kg-1) under field conditions, with 1.5 to twofold rise in superoxide dismutase (SOD) and carbonic anhydrase (CA) activity in rice compared with the control. The rice plants treated with zinc solubilizing bacteria, followed by zinc treatments gave higher grain yields of 23.4–34.1 g pot-1 and 3.2–3.6 t ha−1 in rice cultivars, Basmati 385 and Super Basmati. The S. marcescens FA-4 with a half dose of chemical Zn also increased the zinc translocation index (1.4 to 1.7) toward grains. Consistency in the performance of zinc solubilizing bacteria occurred in the pot and field conditions. Hence, a conclusion that the use of zinc solubilizing strains is an efficient approach to enhance the zinc content of rice grains and combat the problem of zinc deficiency in humans.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3