RESPONSE OF PEANUT TO WEED CONTROL MANAGEMENT AND NANO-ZINC FOLIAR APPLICATION IN GROWTH, YIELD, AND QUALITY TRAITS

Author:

AL-YASARI B.A.A.,AL-YASARI M.N.H.

Abstract

A field experiment on a local peanut (Arachis hypogaea L.) cultivar transpired in the spring season of 2021 at the Al-Hussainiya region, Holy Kerbala, Iraq (Latitude: 32.6160; Longitude: 44.0249). The completed study aimed to determine peanut response to weed control, foliar application of nano-zinc, and their interaction in growth, yield, and quality traits. The experiment laid out in a split-plot design with two factors (weed control and nano-zinc foliar application) had three replications. The nano-zinc concentrations (0, 50, and 100 mg L-1) occupied the main plots, with the weed control treatments kept in sub-plots. Weed control included the control (T0 – no weed control), manual hoeing (T1), and weed control with pre-emergence (pre-em) herbicides, i.e., Trifluralin (T2) and Pendimethalin (T3), and post-emergence (post-em) herbicides, viz., Oxyfluorfen (T4) and Clethodim (T5). The results showed that post-em herbicide Oxyfluorfen gave superior enhancement on the vegetative dry weight, pods per plant, seeds per plant, total pod yield, protein, and zinc in the seeds with increased values of 52.0%, 265.1%, 254.5%, 211.9%, 13.2%, and 25.5%, respectively, compared with the control treatment. Nano-zinc (100 mg L-1) foliar application led to a significant increase in the above traits with increased rates of 2.5%, 21.2%, 40.6%, 7.4%, 8.2%, and 89.2%, respectively, compared with the control. The interaction between both factors showed significant superiority compared with no weeding and separate application of weed control combined with chemical herbicides and nano-zinc application. The interaction between the post-em weed management (Oxyfluorfen) and nano-zinc (100 mg L-1) application showed highly superior compared with other treatments in the studied traits.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3