HETEROSIS AND HETEROTIC GROUPING EFFECTS ON GRAIN YIELD, HEIGHT, TILLER DENSITY, AND DAYS TO HEADING IN HYBRID RICE (ORYZA

Author:

SAMONTE SOPB,SANCHEZ DL,ALPUERTO JBB,WILSON LT,YAN Z,THOMSON MJ

Abstract

Heterotic groups are necessary for high vigor in hybrid rice. However, hybrids produced from crosses between parents from different rice subspecies (i.e., Indica × Japonica) have extensive incompatibility issues exhibited by low seed sets. The study objectives were to evaluate the heterosis in grain yield and yield-related traits between hybrids produced from low and high parental genetic distances (PGDs) and demonstrate the heterotic group approach in rice. From PGDs, eight and three hybrids were assigned to the low and high PGD hybrid groups, respectively. Neighbor-joining clustering and model-based population structure analyses classified the hybrid parents into four heterotic groups, with the low and high PGD hybrid groups found consisting of intra-subpopulation and intersubpopulation crosses, respectively. Replicated yield trials conducted at Beaumont, Texas, transpired in 2019 and 2020. The hybrids exhibited normal seed sets, with at least one of each hybrid's parents determined to possess the wide compatibility S5n allele necessary for normal seed sets in wide crosses. Trait and standard heterosis values estimates included the number of days to heading, plant height, tiller density, and grain yield. Higher trait values and heterosis for tiller density and grain yield occurred in the high than the low PGD hybrid group, especially in the inter-subpopulation crosses with indica rice. PGD had consistent positive correlations with heterosis for grain yield (r = 0.41 to 0.60) and tiller density (0.28 to 0.36) in both years. PGDs aid in determining highly heterotic cross combinations for tiller density and grain yield and in forming heterotic groups. Heterotic grouping is advisable through cluster and structure analyses of genome-wide markers instead of identifying genetically-distant crosses based on pedigree information.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3