PHOSPHATE FERTILIZER AND NANO-MAGNESIUM FERTILIZATION EFFECTS ON GENE EXPRESSION, GROWTH, AND YIELD TRAITS OF DATURA (DATURA STRAMONIUM L.)

Author:

AL-TAMIMI S.K.,FARHOOD A.N.

Abstract

A study on the effects of phosphate fertilization and nano-magnesium application on several genes that control alkaloid synthesis, growth, and yield traits in Datura (Datura stramonium L.) underwent a field experiment in 2021 at the College of Agriculture, the University of Kerbala, Iraq. Using a randomized complete block design, the experiment had two factors with three replications. The first factor used phosphate (P) fertilizer, i.e., 0, 25, 50, and 75 kg P ha-1, while the second factor included a nano-magnesium application by spraying with concentrations of 0, 60, 120, and 180 mg Mg L-1. The results showed that adding 50 and 75 kg P ha-1 caused a decline in the concentration of atropine, hyoscyamine, and scopolamine in Datura leaves (22.77, 81.02, and 68.90 mg g-1) and seeds (40.93, 65.69 and 99.79 mg g-1), respectively. Sequentially, 25 and 50 kg P ha-1 generated the most yields of alkaloids in Datura leaves, with an average of 149.10 and 149.12 kg P ha-1. Nano-magnesium application at the concentration of 180 mg Mg L-1 caused a significant decrease in the concentration of atropine, hyoscyamine, and scopolamine in seeds and leaves, i.e., with average values in leaves (29.50, 90.25, and 71.25 mg g-1) and seeds (46.25, 82.49 and 121.320 mg g-1), respectively. However, nano-magnesium concentrations of 0 and 120 mg Mg L-1 gave the highest yield of alkaloids in the leaves, with average values of 152.30 and 152.81 kg ha-1. The nano-magnesium concentration of 120 mg Mg L-1 contributed the largest yield of alkaloids in seeds, with an average of 78.65 kg ha-1. The results also showed phosphorus addition significantly decreased the PMT, TR1, and H6H gene expressions, whereas nano-magnesium application only reduced the H6H gene expression. High quantities of fertilizers phosphorus and nano-magnesium boost Datura's vegetative growth and production but lowered the alkaloid yield, thus recommending a balanced proportion.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Subject

Horticulture,Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3