Molecular characterization and n use efficiency of LeAlaAT ‘Mekongga’ transgenic rice lines

Author:

Yulita D.S.,Purwoko B.S.,Sisharmini A.,Apriana A.,Santoso T.J.,Trijatmiko K.R.,Sukma D.

Abstract

Genetic engineering is one of the strategies for developing nitrogen (N)-use-efficient rice (Oryza sativa) varieties. One gene that plays an indirect role in N metabolism is alanine aminotransferase (AlaAT). It can efficiently increase N content and crop yield. In a previous study, the tomato AlaAT gene (LeAlaAT) was successfully isolated and introduced into ‘Mekongga’ rice. The present research was conducted during 2018 and 2019 at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Bogor, Indonesia. The objectives of the present study were to perform the molecular characterization of LeAlaAT ‘Mekongga’ rice lines on the basis of the hpt marker gene, the direct PCR of the LeAlaAT fragment, and the phenotypic evaluation of the selected LeAlaAT T1 ‘Mekongga’ rice lines in response to different N fertilizer rates (0 kg ha−1 [control] and 60, 90, and 120 kg ha−1). This research involved three activities, namely (1) Southern blot analysis, (2) direct PCR, and (3) N use efficiency (NUE) test of ‘Mekongga’ transgenic lines. Southern blot analysis revealed that in T0 transgenic lines, the copy number of the hpt marker gene varied from 1 to 3. Direct PCR confirmed the presence of the AlaAT fragment in the T1 generation of five ‘Mekongga’ transgenic lines. The five transgenic lines showed high panicle number, biomass weight, shoot dry weight, and total grain weight under 120 kg ha−1 nitrogen. The high agronomical NUE of transgenic lines under 120 kg ha−1 N implied that the transgenic rice lines have the potential for efficient N use at a certain minimum level of N (120 kg ha−1 of nitrogen) and should be further evaluated at high N levels.

Publisher

Society for the Advancement of Breeding Research in Asia and Oceania

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3