Mapping Urban Land Use in India and Mexico using Remote Sensing and Machine Learning

Author:

Kerins Peter,Guzder-Williams Brook,Mackres Eric,Rashid Taufiq,Pietraszkiewicz Eric

Abstract

This technical note describes the data sources and methodology underpinning a computer system for the automated generation of land use/land cover (LULC) maps of urban areas based on medium-resolution (10–30m/pixel) satellite imagery. The system and maps deploy the LULC taxonomy of the Atlas of Urban Expansion—2016 Edition: open, nonresidential, roads, and four types of residential space. We used supervised machine learning techniques to apply this taxonomy at scale. Distinguishing between recognizable, clearly defined types of land use within a built-up area, rather than merely delineating artificial land cover, enables a huge variety of potential applications for policy, planning, and research. We demonstrate the training and application of machine-learning-based algorithms to characterize LULC over a large spatial and temporal range in a way that avoids many of the onerous constraints and expenses of the traditional LULC mapping process: manual identification and classification of features. This document supersedes the previous technical note, Spatial Characterization of Urban Land Use through Machine Learning, and the methodology described here supersedes our previously reported techniques.

Publisher

World Resources Institute

Reference30 articles.

1. Angel, Shlomo, Alejandro M. Biel, Jason Parent, Patrick Lamson-Hall, and Nicolás Galarza Sánchez. 2016a. Areas and Densities, vol. 1 of Atlas of Urban Expansion: 2016 Edition, 2 vols. New York; Nairobi; Cambridge, MA: New York University; UN-Habitat; Lincoln Institute of Land Policy. https://www.lincolninst.edu/sites/default/files/pubfiles/atlas-of-urban¬expansion-2016-volume-1-full.pdf.

2. Angel, Shlomo, Patrick Lamson-Hall, Manuel Madrid, Alejandro M. Biel, and Jason Parent. 2016b. Blocks and Roads, vol. 2 of Atlas of Urban Expansion: 2016 Edition, 2 vols. New York; Nairobi; Cambridge, MA: New York University; UN-Habitat; Lincoln Institute of Land Policy. https://www.lincolninst.edu/sites/default/files/pubfiles/atlas-of-urban¬expansion-2016-volume-2-full.pdf.

3. Asher, Claire. 2019. "How Much Land on Earth Is Inhabited?" Curious Meerkat. http://www.curiousmeerkat.co.uk/questions/much-land-earth-inhabited/.

4. Banzhaf, Ellen, and René Höfer. 2008. "Monitoring Urban Structure Types as Spatial Indicators with CIR Aerial Photographs for a More Effective Urban Environmental Management." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1 (2): 129-138. doi:10.1109/ JSTARS.2008.2003310.

5. Chollet, François. 2017. "Xception: Deep Learning with Depthwise Separable Convolutions." ArXiv:1610.02357 [Cs], April. http://arxiv.org/abs/1610.02357.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3