Case study: Separating source contributions of vehicle interior noise by operational transfer path analysis

Author:

Lu Ming-Hung1,Jen Ming Une1,de Klerk Dennis2

Affiliation:

1. Industrial Technology Research Institute

2. Müller-BBM VibroAkustik Systeme B.V.

Abstract

The perception of vehicle interior noise is a key quality index to customers and automakers alike. By tracing noise back to key noise sources and paths, one can focus their refinement efforts. Aiming at the most efficient way to identify the primary noise sources in a vehicle cabin, this article establishes a framework of operational transfer path analysis (OTPA) for separating contributions of noise sources by operational measurements only. OTPA model design, measuring essentials and synthesis method used for separating vehicle interior noise contributions from the powertrain, tires andwindwere described in detail. To comprehend the implementation of OTPA on noise source separation, this article also addresses an exemplification study on an electric vehicle. In the case study illustrated, both spectral map and order extractions were used to validate if the OTPA synthesized results of the powertrain noise contribution agreed with the measured results. Tire noise contribution was validated using the tires driven by the dynamometer along with all other systems switched off. With well-validated OTPA model for the powertrain and tires, further individual path breakdown of the powertrain and tire noise then was investigated to identify key contributors to the interior noise. After clearly separating interior noise contributions, one therefore could design effective countermeasures to mitigate the dominant noise sources. With appropriate scheme of measurement and synthesis, the OTPA technique could therefore effectively serve target setting and refinement focus at foremost noise contributors.

Publisher

Institute of Noise Control Engineering (INCE)

Subject

Industrial and Manufacturing Engineering,Public Health, Environmental and Occupational Health,Mechanical Engineering,Acoustics and Ultrasonics,Aerospace Engineering,Automotive Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3