Parametric optimization of aircraft arrival trajectories for aviation noise mitigation using BADA4 performance model

Author:

Behere Ameya,Puranik Tejas,Kirby Michelle,Mavris Dimitri

Abstract

Successful mitigation of aviation noise is a key enabler for sustainable aviation growth. A key focus of this effort is the noise arising from aircraft arrival operations. Arrival operations are characterized by the use of high-lift devices, deployment of landing gear, and low thrust levels, which results in the airframe being the major component of noise. In order to optimize for arrival noise, management of the flap schedule and gear deployment is crucial. This research aims to create an optimization framework for evaluating various aircraft trajectories in terms of their noise impact. A parametric representation of the aircraft arrival trajectory will be created to allow for the variation of aircraft's flap schedule. The Federal Aviation Administration's Aviation Environmental Design Tool will be used to simulate the aircraft trajectory and performance, and to compute the noise metrics. Specifically, the latest performance model from EUROCONTROL called "Base of Aircraft Data - Family 4" will be used. This performance model contains higher fidelity modeling of aircraft aerodynamics and other characteristics which allows for better parametric variation.

Publisher

Institute of Noise Control Engineering (INCE)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3